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Abstract

In this paper, we use the copulas functions in financial application, namely to examine 
the assumption of asymmetric dependence and to calculate some measures of risk. The 
first step consists of deducing filtered residuals for each return series by an asymmetric 
Glosten-Jagannathan-Runkle Generalized Autoregressive conditional Hetero skedasticity 
(GJR-GARCH) model. For the second step, we use an estimation of a Generalized 
Pareto Distribution for the upper and lower tails to determine the empirical semi-
parametric marginal Cumulative Distribution Function. In our approach, we propose 
to use a portfolio consisting of increments from five countries. The GJR-GARCH 
copula is then applied to the data and used to reduce correlation between the simulated 
residuals of each series. The marginal distributions of filtered residuals are fitted with 
a semi-parametric Cumulative Distribution Function using the copulas’ functions and 
Generalized Pareto Distribution for tails. For each series, we compute Value-at-Risk and 
Conditional Value-at-Risk.
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I. Introduction

Market risk managers have to comprehend the stochastic confidence in the markets’ 
risk-sensitivity in their portfolio to calculate risk measures as value-at-risk. In the recent 
years, many essays developed an approach to measure the risk of random events via 
Jorion (1996) and Dowd (1998).

Value-at-Risk is a statistic model which is described to declare the risk of an exposure 
by a single number, that is, Value-at-Risk model estimates the potential loss for a 
financial instrument portfolio over a given time horizon and confidence level. It became 
the standard and simple measurement in risk management widely used in financial 
sectors. However, it has many limitations in quantifying the risks. In 2001, Dembo 
and Freeman showed that Value-at-Risk models do not present a sufficient distinction 
between good and bad risks. It is not a coherent risk measure because it does not satisfy 
one of axiomatic condition; namely, sub-additivity. Also, it only describes a limit of the 
losses but do not define the potential loss when the limit is exceeded. Just like in Long 
Term Capital Management (LTCM) case, the collateralized debt obligations of Barings 
Bank, Enron, Bear Sterns, or Lehman Brothers were a resounding disaster in which 
correlations and risk in general were not faithfully measured.

Extreme values is important to contribute in this area by using the heterosckedasticity 
with some mathematical purpose to adjust so that it is consistent with reality.

As a solution, there are several volatility models from GARCH family such as 
asymmetric GARCH Glosten, Jagannathan, and Runkle (GJR 1993), exponential 
GARCH (EGARCH) (Nelson 1991), Fuzzy-GARCH, Markov-Switching GARCH, and 
other approaches to model the heteroskedasticity. 

Also, we use the copulas in the multivariate case for computing the stochastic 
dependence between the variables. They present the way that the marginal distributions 
have to be coupled to yield the joint distribution function. 

Our contribution in this paper is first the use of a copula function followed by the 
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use of GARCH copulas, in particular, a GJR-GARCH to examine the asymmetric 
dependence between structure and measure of complex non-linear relationships among 
financial asset returns. 

The present paper is organized as follows. Section II presents a short review of the 
relevant literature describing the proposed approach. The copulas employed in this paper 
are presented in Section III. Section IV contains the data processing and the empirical 
results. Finally, Section V concludes.

II. Review for Copula 

In this section, we first present the fundamental relations, properties, and families of 
the copula and then review the application of the copula.

A. Copula definition

The copula is essentially a function that links univariate marginal distributions to the 
joint multivariate distribution function, which is simply a convenient way to describe 
joint distributions of two or more random variables. The theory of copula is a highly 
powerful tool for modeling joint distributions because it does not require the assumption 
of joint normality and allows us to decompose any n-dimensional joint distribution 
into its n marginal distributions. It is able to extract the dependence structure from the 
joint probability distribution function and, simultaneously, to isolate such dependence 
structure from the univariate marginal distributions. Conversely, a copula produces 
a multivariate joint distribution, combining marginal distributions and dependence 
between the variables. The copula has been broadly used in the statistical literatures. 
The books of Joe (1997), Nelsen (1999), and Trivedi and Zimmer (2007) presented a 
good introduction to the copula theory. Although the copula has been recently used in 
the financial area, there are already several applications (Bouyè et al. 2000, Embrechts, 
McNeil, and Straumann 2002, and Embrechts, Lindskog, and McNeil 2001). 

For simplicity purposes, we define only the bivariate case: A two-dimensional copula 
function is a function C, whose domains are [0, 1]2 and whose range is [0, 1]. We also 
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consider the following properties:

 C (x1, 1) = C (1, x2) = 1 

C (x) = 0    for all   x ∈ [0,1]2        when at least one element of x is 0            (1)
                                                       

C (x1, 1) = C (1, x2) = 1    for all   (x1, x2) ∈ [0,1]2                          (2)                                                                    

for all ( ) ( ) [ ]2
1 2 1 2 1 1 2 2. , , , 0,1 ,for all a a b b with a b and a b= ≤ ≤   with   ( ) ( ) [ ]2

1 2 1 2 1 1 2 2. , , , 0,1 ,for all a a b b with a b and a b= ≤ ≤  and  ( ) ( ) [ ]2
1 2 1 2 1 1 2 2. , , , 0,1 ,for all a a b b with a b and a b= ≤ ≤                (3)                                             

 
We have:

[ ]( ) ( ) ( ) ( ) ( )2 2 1 2 2 1 1 1, , , , , 0CV a b C a b C a b C a b C a b= − − + ≥                 (4)                                                        

Also, the copula C can define as a function for the random vector X = (X1, X2)
t, if it is 

the joint distribution function of the random vector U = (U1, U2)
t where Ui = Fi(Xi), and 

Fi are the marginal distribution functions of Xi, i = 1, 2. 

Such that: 
	

( ) ( ) ( )( )1 2 1 1 2 2, ,F x x C F x F x=  
	
Where F is the joint distribution function of ( )1 2,X X . If F1 and F2 are continuous 
then the copula C is unique. Thus, we can interpret a copula as a function which links 
the marginal distributions of a random vector to its joint distribution.

Now, we present five types of dependence structures to estimate the joint distribution; 
namely, Gaussian Copula, student Copula, Clayton Copula, Frank Copula, and Gumbell 
copula. 

B. Copula families

The Gaussian copula is the copula of the multivariate normal distribution which is 
defined by the following equation:
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 ( ) ( ) ( ) ( )( )-1 -1 -1
1 2 1 2, ,....; , ,...,t t nt p t t ntC u u u u u uρ φ φ φ= Φ                      (5)                                                                  

φ  : function of the normal distribution N (0,1) 
φ−1: the inverse function of the normal cumulative distribution 
Φp : the distribution the centered Gaussian vector (X, Y) of the covariance matrix

1
1
ρ

ρ
 
 
 

                    ( )
( )

( )
2 2

22

21 exp
2 12 1

x y

p

s t st
dsdt

ρ

ρπ ρ−∞ −∞

 + −
 Φ = −

− −  
∫ ∫                                                               (6)

To capture the fat tail property, we introduce the multivariate student’s t Copula 
which shows more observations in the tails than the Gaussian. The student’s t-copula is 
defined as, 

  
 ( ) ( ) ( ) ( )( )1 1 1

1 2 , 1 2, ,..., , ,.....,t t nt k t t ntC u u u T T u T u T uρ ρ ρ ρ
− − −=                   (7)

                               
( ) ( )

2
22 2

, 22

1 2, 1
12 1

v

x y

v
s t stt x y dsdt

vρ
ρ

ρπ ρ

+
−

−∞ −∞

 + − = +
 −−  

∫ ∫                (8)  

                         

,vtρ  is a standard multivariate t distribution, while the correlation ρ, and ν is the 
degrees of freedom.

It is very close to a Gaussian with strong correlations for movements with similar 
signs. The relationship that applies for Kendall’s tau for a Gaussian copula also 
applies for student copula. The t copula is a student copula which joins the marginal t 
distributions with same degrees of freedom to the bivariate t distribution. The t student 
copula generalizes the bivariate t distribution because we can adopt any marginal 
distribution. The Joe-Clayton copula function is given by the following Cumulative 
Distribution Function (CDF): 
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  ( ) ( ) 1

1 2 1 2, ,....., ... 1nnC u u u u u u nθ θ θ θ
θ

−− − −= + + + − +                       (9)                                                            
  
 

Its generator is, ( ) 1ux
θ

φ
θ

− −
=                                        (10)                                                                             

 
At this level, copulas have been proven to be a good technique to represent 

dependence between the variables’ contributions to the two models of the system: the 
simple and the complex. In reliability system models, they alternate between whether 
common reasons are unknown or destined to be modelled. 

The Frank copula is described by the following equation:
	 		       

          
( ) ( ) ( )( )1 1

1 2

1 1 11, ; log
1

u u

Frank

e e e
C u u

e

λ λλ

λ

λ
λ

λ

− −−

−

 − − − −−
=   − 

		
                                   (11)

   
 								      

Here,  ( ) ( ),0 0,λ ∈ −∞ +∞
                                         (12)                                                                                               

                                  

The Gumbel copula was introduced in Hougaard (1986). It is also known as the 
Gumbel-Hougaard family. The CDFs are defined by the following: 

( ) ( ) ( )( )
1

1 2 1 2, ; exp log logGumbelC u u u uδ δ δδ
 

= − − + −  
 

                 (13)                                                       
       

( ) ( )1 2 1 2 1 2, ; 1 1 ,1 ;Rotated Gumbel GumbelC u u u u C u uδ δ− = + − + − −               (14)                                                    

where [ )0,δ ∈ ∞                                                      (15)

δ is the parameter which determines the correlation of random variables. C (u1, u2,…, 
u, δ ) is completely correlated. 



jei Vol.30 No.1, March 2015, 172~205                                   Samia Ben Messaoud and Chaker Aloui

http://dx.doi.org/10.11130/jei.2015.30.1.172

178

The recent papers apply the copula concept. Breymann et al. (2003) has considered 
the Gaussian, Student, Clayton, and Gumbel copulas. Among the various copulas, they 
judge that the student copula performs the best. Chen et al. (2004) consider 30 daily 
US stock returns and 20 daily exchange rate returns with the US Dollar as a base, and 
multivariate versions of the Gaussian and t-copula. They point out that the Gaussian 
copula is always rejected. The student copula assumes to be competent for analyzing 
the multivariate stochastic dependence of stock returns. Patton (2006) has studied the 
conditional and unconditional versions of the Gaussian copula and the symmetrized Joe-
Clayton copula for defining the stochastic dependence between them.

Malevergne and Sornette (2003) finds that the bivariate student copula can be agreed 
upon for exchange rates and stocks if it has sufficient degree of freedom. Ane and 
Kharoubi (2003) examines unconditional versions of the Gaussian copula to evaluate 
the stochastic dependence between pairs of five stock indices. They achieve the Johnson 
copula, which exhibits lower tail dependence and upper tail independence. Van den 
Goorbergh (2004) examines that in general, a conditional student copula seems to be 
most suitable for defining the pair-wise dependencies. Jondeau and Rockinger (2006) 
finds that a conditional student copula performs better than a conditional Gaussian 
copula. Hotta and Palaro (2006) uses conditional copula to estimate Value-at-Risk for 
a bivariate indices portfolio. Rodriguez (2007) estimates the stochastic dependence 
between daily returns. He examines evidence for changing dependencies during the 
crisis. The Gaussian and the student copula exhibit features that violate the observed 
complex dependence structure which is characterized by asymmetry and upper tail 
dependence. Studies that analyze the default risk dependencies include those by Das et 
al. (2007) and Aboura and Wagner (2008). They show that observable macroeconomic 
variables and latent common variables play a major role in explaining correlated defaults 
in systematic credit risk.

C. Copula applications

Applications which used copula to estimate Value at Risk (VaR) go back the last 
ten years. According to Huang et al. (2009), copulas are methods that describe the 
dependence structure of a random multi-dimensional variable and they have become 
one of the most important tools to manage new risk factors in finance, like VaR which 
is probably the largest risk measure used by financial institutions. The VaR measures 



jeiMeasuring Risk of Portfolio: GARCH-Copula Model

179

the potential loss in value of a risky asset or portfolio over a defined period for a given 
confidence interval.

The copula used by the previous studies does not include conditionality so they input  
no time-varying function. It is used with a short fall expected during the estimation of 
flat tails. Juri and Wuthrichts (2002) combines copula with Extreme Value Theory (EVT), 
while Mendes and Souza (2004) focused on crisis scenarios to calculate VaR quantity. 
Embrechts et al. (2005) used copula to estimate VaR in the worst case scenarios.

There are also several methods to determine the VaR. For instance, Cherubini 
and Luciano (2001) estimated the VaR using the Archimedean copula family and the 
historical empirical distribution in the estimation of marginal distributions; Rockinger 
and Jondeau (2001) used the Plackett copula with GARCH process with innovations 
modeled by the t Student asymmetrical generalized distribution of Hansen (1994), 
proposing a new measure of conditional dependence; Georges (2001) used the normal 
copula to model the options time of exercise and for derivative pricing; Meneguzzo and 
Vecchiato (2002) used copula for modeling the Risk of Credit Derivatives (RCD); Fortin 
and Kuzmics (2002) employed convex linear combinations of copula for estimating 
the VaR of a portfolio composed by the FSTE and DAX stock indices; and Embrechts, 
McNeil, and Straumann (2002) and Embrechts, Hoing and Juri (2003) takes copula to 
model extreme value and risk limits. These recently published papers show a wide range 
of copula applications in finance.

The recent extension of the unconditional copula theory to the conditional case has 
been done by Patton (2003a) to model time-varying conditional dependence. Time 
variation in the first and second conditional moments is widely discussed in the statistical 
literature, so allowing the temporal variation in the conditional dependence in time series 
seems to be natural. Wang et al. (2010) applies a GARCH model to estimate exchange 
portfolio risk. Multivariate copulas, including Guassian and Clayton copula have been 
applied to describe portfolio risk structure and extend a bivariate analysis of an active 
dimensional allocation problem.

In this study, we use a GJR version of GARCH based on a student’s t-copula to 
estimate VaR. This paper proposes an application of the copula-GARCH to estimate 
the VaR of a portfolio, which is our contribution. Compared to traditional methods, the 
results capture the copula model of VaR very well. Second, we combine the GARCH 
modeling approach and some multivariate extreme value copula functions.
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III. Estimation Models 

A. Copula parameter estimates

The copula theory is a fundamental tool in modeling multivariate distributions. It 
allows the definition of the joint distribution through the marginal distributions and the 
dependence between the variables.

In application domains, conditional copula was constructed based on the Sklar’s 
(1959) dependency theory. We use the Sklar’s theorem which is a key result in the 
theory of copula.

The theorem of Sklar is described as follows: let F be a complete bivariate joint 
distribution function having univariate marginal distributions F1 and F2. The copula C 
related to F is written as:

                                          

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( )

1 1 1 2 2

111
1 1 2 2

1 2

,........., , ,...........,

, ,.........,

,.........,,

d d d

d d

C u u C F x F x F x

F F x F x F x

F x x

−

dx

−−

=

=

=

                                                                                                                

 (16)

With this theorem, we can conclude that for continuous multivariate distribution, 
the univariate marginal distribution and the multivariate dependence structure can be 
separated. This copula is unique if the margins are continuous. The proof can be found in 
Nelsen (1999).

It is the converse of the Sklar’s theorem that is most interesting for modeling 
multivariate distributions in finance. It implies that we may link any group of n univariate 
distributions, of any type of families, with any copula and we will have defined a valid 
multivariate distribution. The usefulness of this result stems from the fact that while in 
economics and statistics literature, we have a large set of flexible parametric univariate 
distributions available, the set of parametric multivariate distributions available is much 
smaller.

According to Patton (2003b), decomposing the multivariate distribution into the 
marginal distributions and the copula allows for the construction of better models of the 
individual variables than would be possible if we constrained ourselves to look only at 
existing multivariate distributions.
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Patton (2003a) made further extension and proved the validity of the Sklar’s theorem 
for the conditional case. In this extension, the conditioning variable, W, must be the same 
for the marginal distributions and the copula.

For the definition of copula for the general case (n > 2) and for more details, look at 
Nelsen (1999) and Bouyé et al. (2000).

Density f of a bivariate distribution might be written also as a function of density C of 
the relevant copula and densities of  F1 and F2. 

 ( ) ( ) ( )( )1 2 1 1 2 2, ,f x x C F x F x=                                        (17)

B. Generalized pareto distribution  

Once the marginal distributions of filtered residuals were fitted using a Generalized 
Pareto Distribution (GPD) approach for tails distribution and a Gaussian kernel for the 
interior of distribution, the next stage was to estimate the parameters of dependence 
structure for the analyzed portfolio. While isolating the effects of marginal distribution, 
the dependence existent among the four currencies was estimated. Capturing the 
interaction among the portfolio assets by isolating the individual behavior of each asset 
is, in fact, the role of Copula. 

We focus on the distribution of losses beyond a given threshold,  µ :

( ) { }F y P X y Xµ µ µ= − ≤                                    (18)                                               

For distributions checking extreme value theorem and for a threshold u that is large 
enough, there is x, b such that Fµ converges towards a Generalized Pareto Distribution. 

( ) ( ),F y G yµ ξ β=                                                  (19)                                                                                                     

     (20)

                                       

( )
( )

( )

1

,

11 0

1 exp 0

x

G x
x

ξ

ξ β

ξ ξβ

ξβ

−
+− ≠= 

 −− =
       	  	                                                                                   
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If n is the total number of the sample and Nu the number of values exceeding u, then: 

                                                                                
( ) 1 1uN xF x

N

ξµξ
β

−
 −

= − + 
 




1                                                                                             
                                                                                  (21)

( )1 1q
u

nVAR u q
N

ξβ
ξ

−  
= + − −     





                                  (22)                                                                              
 

We may also estimate loss forecast in case of exceeding VaR.

                                                                 (23)
                                

q q q qES VAR E X VaR X VaR = + − 

      

                                                                         
( )

1
1 1

q

q q

ES u
VaR VaR

β ξ
ξ ξ

−
= +

− −                                         
(24)

                                                                                              

C. GJR-GARCH model

Bollerslev (1986) developed GARCH as a generalization of Engle’s (1982) original 
ARCH volatility modeling technique. He designed it to offer a more parsimonious model 
(using fewer parameters) that lessens the computational burden. Nelson (1991) proposed 
an Exponential GARCH (EGARCH) model, based on a logarithmic expression of the 
conditional variability in the variable under analysis. Later, a number of modifications 
were derived from this method. One of them is the GJR-GARCH model of Glosten, 
Jagannathan, and Runkle (1993) which can accommodate the asymmetry in the response 
of the variance to a shock. 

Unlike the classical GARCH model, the GJR model contains an asymmetric effort. 
Here, asymmetry is captured by the term multiplying φ . When φ  is positive, it means 
that negative shocks introduce more volatility than positive shocks of the same size in 
the subsequent period. The estimation of the parameters above is also introduced in the 
following section. The conditional marginal distribution of Xt+1 is almost the same as the 
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GARCH model, which is defined as the following.
Consider a GARCH model under the innovation normality hypothesis:

                                                                  (25)

                                   0

2 2
0 1 1 1 1 1t i

t t

t t t

t t t t

y c

z h

h I hε

ε

ε

α α ε ϕ ε β
−− − −

= +

=

= + + +


                                                                                        

( ). . . 0,1tz i i d N ( ). . . 0,1tz i i d N                                                     (26)                                                                                                                      

Here, the variables t and z are independently, identically distributed (i.i.d) according 
to a centered and reduced normal distribution. The log-likelihood function of a sample 
with T observations { }1,......, Ty y  obtained under a conditional distribution of t and y 
knowing its function is written as:

        ( ) ( ) 2

1 1

1 1log ( ) log(2 ) log( )
2 2 2

T T
t t

t
t t t

y mTL h
h

ρ
ρ ρ

= =

−  = − Π − −∑ ∑
                                        

(27)
 

Here, ρ denotes the model’s set of parameters, ρ denotes conditional forecast, and ρ 
denotes conditional variance, respectively.

 The case of the GJR-GARCH is presented below:

( )
( )

0

2 2
0 1 1 1 1 1t i

t

t t t t

m c

h I hε

ρ

ρ α α ε ϕ ε β
−− − −

=

= + + +


                               (28)                                                                           



jei Vol.30 No.1, March 2015, 172~205                                   Samia Ben Messaoud and Chaker Aloui

http://dx.doi.org/10.11130/jei.2015.30.1.172

184

IV. Empirical Analysis

A. Data

We empirically examine the interaction between stock markets of different 
increments. The database consists of increments from four countries of Egypt, Malaysia, 
South Africa, and Turkey. The study makes use of daily returns of market indices during 
the period of January 1, 1997 to June 15, 2010. The choice of this set of countries is 
linked to the digital economy ranking.

Figure 1 shows the daily centered logarithmic returns. It is clear that they are highly 
correlated.

Figure 1. Daily logarithmic centered returns
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A. Daily logarithmic centered returns: Egypt
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The Extreme Value Theory (EVT) represents a domain of the probability theory 
that deals with the study of extreme events. Such events are characterized by extreme 
deviations from the normal median of their probability distributions. More precisely, 
the EVT studies and models the behavior of distributions in their extreme tails. These 
rare events are described by a thickening of the tails, which determines an excess of 
the kurtosis above the characteristic value of the Gaussian distribution. Therefore, the 
apparitions of the so-called fat tails are also known as the leptokurtic distributions. EVT 
focuses directly on the tails and, therefore, could potentially give us better estimates and 
forecasts on risk. Applying EVT to the return series, however, is inappropriate as they 
are not distributed independently and identically. 

Thus, following the approach of Frey and McNeil (2000), we use GARCH model to 
fit the return series and apply EVT to the residuals rather than to the return series. Figure 
2 illustrates the residuals by the conditional standard deviation from each index. We 
show the zero-mean, while the independent and identically distributed series depend on 
the EVT estimation.
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Figure 2. Filtered conditional residuals
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B. Step-wise probability distribution

We statistically describe probability distribution of daily returns of series of whatever 
capital increments. We assume that this description is given by a semi-parametric 
step-wise distribution, where asymptotic behavior in each tail replicates a generalized 
Pareto distribution. Afterwards, a copula will be used to provide random figures to pilot 
the simulations. The transformed CDF and the reverse CDF determine the volatility 
of returns simulated as an element of the diffusion edge of the stochastic differential 
equation. The average return of each increment is determined by risk less movement and 
incorporated at the deviation edge of the stochastic differential equation.

Figure 3 presents, respectively, the residuals Autocorrelation Function (ACF) and 
sample ACF of squared standardized residuals. The residual of ACF indicates periodic 
smooth correlation. However, the sample ACF of the squared residuals reported in 
Figure 4 shows an important level of determination, which offer that we have used our 
GJR-GARCH model to condition data for the tail evaluation process. 
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Figure 3. Autocorrelation function of residuals
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A. Sample ACF of squared returns : Egypt

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e 

A
ut

oc
or

re
la

tio
n

B. Sample ACF of squared returns : South Africa



jeiMeasuring Risk of Portfolio: GARCH-Copula Model

191

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e 

A
ut

oc
or

re
la

tio
n

C. Sample ACF of squared returns : Turkey
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D. Sample ACF of squared returns : Malaysia
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Figure 4. Autocorrelation function of residuals squared
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A. Sample ACF of standardized residuals : Egypt
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B. Sample ACF of standardized residuals : South Africa
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C. Sample ACF of standardized residuals : Turkey
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C. Conditional distribution function estimation

The Cumulative Distribution Function  (CDF), or just distribution function, 
describes the probability that a real-valued random variable X with a given probability 
distribution will be found to have a value less than or equal to x. In the case of 
a continuous distribution, it gives the area under the probability density function from 
minus infinity to x. CDFs are also used to specify the distribution of multivariate random 
variables. Estimating a conditional distribution function is an important feature of many 
statistical problems, including, for example, the regression analysis of Yin and Cook 
(2002), where a significant problem is the prediction of a response for a given value of a 
multivariate explanatory variable. Specific applications include those in economics and 
finance such as Foresi and Paracchi (1992), Bond and Patel (2000), and Watanabe (2000); 
in data mining and signal processing such as Adali, Liu, and Sonmez (1997); and a wide 
range of problems where forecasts are to be made from linear or non-linear time series 
Fan and Yao (2003)

Given the i.i.d residuals, we present the empirical estimation of CDF. We would 
clear the estimated CDF by eliminating the biased sample scale CDF. Although the non-
parametric estimations of CDF are well-fit for the center of the distribution where most 
of the data are found, they tend to be inaccurate for the upper and lower tails. To better 
estimate distribution tails, we apply EVT to these residuals in each tail. Figure 5 presents 
the semi-parametric CDF of four countries with data other than the one on which model-
fit is supported.
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Figure 5. Empirical cumulative distribution function
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A. Semi-Parametric/Piecewise CDF: Egypt
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B. Semi-Parametric/Piecewise CDF: South Africa
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C. Semi-Parametric/Piecewise CDF: Turkey

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Centered Return

Pr
ob

ab
ili

ty

D. Semi-Parametric/Piecewise CDF: Malaysia
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The distribution shows interpolation at the CDF center and extrapolation in each tail. 
These would allow the estimation of quintiles outside past events and are inestimable 
for risk management purposes. Our GJR-GARCH model, Gaussian, the Student, and 
Calyton copulas are used to measure a foreign multi-dimensional exchange portfolio risk. 
We use the multivariate Gaussian, Student, and Clayton copula to show the correlation 
structure. 

Risk managers are generally more concerned with the probable state of future 
business as what it would be like next week instead of next year (Hoppe 1998). 
Consequently, to highlight the importance of recent events, while preserving the 
econometric validity of data, risk managers may select applying exponential weightings 
for long chronological series. 

We illustrate the diagrams of upper tail estimation residuals. It shows that the GPD 
adapts the residuals completely. 

Figure 6. Upper tail of residuals
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A. Upper tail of standardized residuals: Egypt
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B. Upper tail of standardized residuals: South Africa
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A. Upper tail of standardized residuals: Egypt
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C. Upper tail of standardized residuals: Turkey
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D. Upper tail of standardized residuals: Malaysia

 

 



jeiMeasuring Risk of Portfolio: GARCH-Copula Model

199

Fitted Generalized Pareto CDF Empirical CDF

Fitted Generalized Pareto CDF Empirical CDF

 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exceedance

Pr
ob

ab
ili

ty

C. Upper tail of standardized residuals: Turkey

 

 

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exceedance

Pr
ob

ab
ili

ty

D. Upper tail of standardized residuals: Malaysia

 

 

Figure 6 indicate that empirical CDF fits the residuals of exchange rate returns perfectly. 
In our approach, we extract the filtered residuals from each returns series with a GJR-
GARCH model, and then we construct the marginal of each series using the empirical 
CDF for the interior and the GPD estimates for the upper tails. The advantage of this 
approach is that the i.i.d assumption behind the EVT is less likely to be violated by the 
filtered series. Fitting the GPD to the filtered returns requires specification of the upper 
thresholds.

(i) We measure the residuals and the independent returns respectively by using 
the multivariate copula and the Extreme Value Theory (EVT). (ii) We measure the 
dependence between variables by the copula and implement the GJR-GARCH used to 
reintroduce the heteroskedasticity in the returns. (iii) We apply this method to determine 
the value of VaR.
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D. Determination of Value at Risk and CVaR

Next, we standardize the individual residuals of our GJR-GARCH version as varied 
by the empirical semi-parametric CDF and then adapt the copula to the transformed data. 
We calculate the empirical VaR and CVaR of an equally weighted portfolio. Table 1 
shows the VaR and CVaR of the portfolio.

Table 1 indicates that under the same confidence level, VaR and CVaR calculated 
from Clayton is less than the student and Gaussian Copula. That is because Clayton 
Copula considers the tail correlation.

Table 1. Portfolio risk under an equally weighted foreign exchange portfolio

Confidence Risk 
Value

Gaussian 
Copula

Student 
Copula

Clayton 
Copula

Proposed 
Approach

0.90
VaR 0.0031 0.0029 0.0028

CVaR 0.0045 0.0032 0.0031

0.95
VaR 0.0043 0.0035 0.0033

CVaR 0.0060 0.0049 0.0041

0.99
VaR 0.0059 0.0050 0.0044

CVaR 0.0079 0.0068 0.0064

Xubiao 
Approach 

0.90
VaR 0.0029 0.0024 0.0024

CVaR 0.0043 0.0037 0.0035

0.95
VaR 0.0038 0.0032 0.0031

CVaR 0.0053 0.0046 0.0042

0.99
VaR 0.0061 0.0058 0.0049

CVaR 0.0081 0.0070 0.0060

(Source) Xubiao (2009).

V. Conclusion

In this paper, we apply the GJR-GARCH with the Extreme Value Theory (EVT) 
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to design the returns distribution model. (i) Our approach uses the GJR-GARCH to 
estimate conditional average of each asset. (ii) Our method is adjusted to residuals tail 
distribution. (iii) Our structure may also be applied to other Value at Risk (VaR) and 
Conditional Value at Risk (CVaR) portfolio problems. The results of this study could be 
used to execute a good risk management of global investments.

Future work may examine a combination of different copulas in dependence 
structure. 
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