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Abstract

In this paper we specify a multi-factor long-memory process that enables us to

estimate the fractional differencing parameters at each frequency separately, and

adopt this framework to model quarterly prices in three European countries

(France, Italy and the UK). The empirical results suggest that inflation in France

and Italy is nonstationary. However, while for the former country this applies both

to the zero and the seasonal frequencies, in the case of Italy the nonstationarity

comes exclusively from the long-run or zero frequency. In the UK, inflation seems

to be stationary with a component of long memory at both the zero and the semi-

annual frequencies, especially at the former. In all cases, we find evidence of mean

reversion, implying that the effects of exogenous shocks on inflation are transitory

and activist policies are not required in response to them. This process is slower

in the case of France and Italy compared with the UK.

• JEL Classification: C22, O40

•Keywords: Fractional Integration, Long Memory, Inflation

*Corresponding address: Guglielmo Maria Caporale; Centre for Empirical Finance, Brunel University,

West London, UB8 3PH, UK. Tel: +44 (0)1895 266713. Fax: +44 (0)1895 26977. E-mail: Guglielmo-

Maria.Caporale@brunel.ac.uk / Luis A. Gil-Alana; Universidad de Navarra Facultad de Ciencias

Economicas Edificio Biblioteca, Entradea Este E-31080 Pamplona SPAIN, Tel: 00 34 948 425 625, Fax:

00 34 948 425 626, E-mail: alana@unav.es

©2011-Center for Economic Integration, Sejong Institution, Sejong University, All Rights Reserved.



The Nature of European Inflation Rates : Multi-Factor Gegenbauer Processes 387

I. Introduction

Modelling inflation is still a controversial issue, and a consensus is yet to be

reached on whether it is a stationary I(0) or a nonstationary I(1) variable. More

recently, it has been suggested that it might be an I(d) process, with d lying

between 0 and 1. Such processes exhibit long memory, with a pole or singularity in

the spectrum at the long-run or zero frequency. This idea was introduced in the

mid-1960s by Granger (1966) and Adelman (1965), who pointed out that for most

aggregate economic time series the spectral density has a typical shape with a spike

as the frequency approaches zero, and differencing the data frequently leads to

overdifferencing at the zero frequency. However, it might be that the series is

characterised by more than one pole or singularity in the spectrum, but, given the

strong influence of the component at the zero frequency, these poles may not be

apparent in the periodogram or in any other estimate of the spectral density

function. This is particularly relevant if seasonal components are present in the

data, as, for instance, in the case of quarterly or monthly data. There exist

procedures for estimating the fractional differencing parameter in this context using

seasonal long-memory models; however, many of them have the limitation of

imposing the same degree of integration at all frequencies in the spectrum. For

instance, this is the case for the Dickey-Hasza-Fuller (DHF, 1984) tests for

seasonal unit roots in a non-fractional context. Hylleberg, Engle, Granger and Yoo

(HEGY, 1990) present a procedure that allows one to consider unit roots at zero

and each of the seasonal frequencies separately, although it focus exclusively on

the I(0)/I(1) cases, not permitting fractional degrees of differentiation.

Alternatively, some authors have used seasonally adjusted data, though the use of

seasonally adjusted procedures have been strongly criticized by many authors.1

By contrast, in the present study we specify a multi-factor long-memory process

that enables us to estimate the fractional differencing parameters at each frequency

separately, and adopt this framework to model quarterly prices in three European

countries (France, Italy and the UK). The flexibility of this approach is important

in order to obtain more precise specifications for the inflation processes than those

based on the standard I(0)/I(1) cases, which is relevant, for instance, for forecasting

purposes. Note that our approach include the standard non-seasonal and seasonal

I(0) and I(1) models as particular cases of interest being more general in the sense

1Subscribers to this view include Ghysels (1988), Barsky and Miron (1989), Chatterjee and Ravikumar

(1992), Hansen and Sargent (1993), and Braun and Evans  (1995) among others.
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that it permits us to consider fractional degrees of integration not only at zero but

also at the seasonal frequencies. By allowing fractional degrees of differentiation

we permit a greater degree of flexibility in the dynamic specification of the series,

not achieved with the classical methods based on ARMA/ARIMA representations.

Thus, for example, in standard I(0)/I(1) contexts mean reversion occurs only in the

I(0) (ARMA) case, while shocks are permanent in the unit root, ARIMA or I(1)

models. In the context of fractional integration mean reversion occurs as long as d

is smaller than 1 and lower is the value of d, faster is the convergence process. Our

results indicate that the three series of prices (i.e. for France, Italy and the UK) can

be well described in terms of fractional processes.

The outline of the paper is as follows: in Section II we briefly review the

literature on modelling inflation, focusing particularly on long-memory models. In

Section III we describe the statistical framework employed in the paper. Section IV

presents the empirical results. Section V analyses the forecasting performance of

the model, whilst Section VI summarises the main findings and offers some

concluding remarks.

II. Literature Review

The empirical literature on inflation is vast. In the last couple of decades

attention has often focused on European countries, as inflation convergence is one

of the requirements for EMU membership specified in the Maastricht treaty.

Several studies have carried out standard unit root tests (see, e.g., Barsky, 1987;

Rose, 1988; McDonald and Murphy, 1989; Kirchgasser and Wolters, 1993), with

mixed results depending on the span of data. Long-memory models have then

become increasingly popular (see, e.g., Chung and Baillie, 1993, and Franses and

Ooms, 1997). Much of the evidence supports the view that inflation is fractionally

integrated with a differencing parameter that is significantly different from zero or

unity. For instance, using US monthly data, Backus and Zin (1993) found a

fractional degree of integration. They argued that aggregation across agents with

heterogeneous beliefs results in long memory in the inflation process. Hassler

(1993) and Delgado and Robinson (1994) provided strong evidence of long

memory in the Swiss and Spanish inflation rates respectively. Baillie, Chung and

Tieslau (1996) examined monthly post-World War II CPI inflation in ten countries,

and found evidence of long memory with mean-reverting behaviour in all countries

except Japan. Similar results were reported by Hassler and Wolters (1995) and
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Baum, Barkoulas and Caglayan (1999).2 The above papers, however, focus

exclusively on the case where the singularity in the spectrum takes place at the zero

frequency. In other words, seasonality is not taken into account or if so it is

considered simply a short run (stationary) process.

Other studies have also attempted to take into account possible persistence and

heteroscedasticity in inflation rates (see, e.g., Chambers, 1998, Bollerslev and

Wright, 2000, Ferrara and Guegan, 2001a). In particular, a general model, which

extends the FIGARCH, FIEGARCH and FARMA-GARCH specifications of

Baillie et al. (1996), Bollerslev and Mikkelsen (1996) and Ling and Li (1997), has

been proposed by Guégan (2000), whose framework combines long-memory

behaviour with quasi-periodic behaviour in the conditional variance of the series.

Guégan (2003) considers a k-factor Gegenbauer process with heteroscedastic

errors. In the present paper the procedures adopted for estimating and testing the

fractional differencing parameters are robust to conditionally heteroscedastic errors,

and the main focus is on estimating the degree of persistence of time series through

the orders of integration at specific frequencies in the spectrum.

III. The statistical framework

In this paper we consider various time series long-memory models. The first is

the standard I(d) model given by

(2)

where xt is an observable time series, or alternatively the errors in a regression

model of the form:

(3)

where zt are deterministic regressors such as an intercept (zt = 1) or an intercept

with a linear time trend (zt = (1, t)
T); L is the lag-operator (Lyt = yt-1), ut is assumed

to be I(0),3 and, given the quarterly frequency of the data analysed here, to follow a

1 L–( )dxt ut   t 1 2 …  , , ,=,=

xt 0   t 0  ,≤,=

yt β 'zt xt       t 1 2 …, ,=   ,,+=

2Other papers dealing with long memory in inflation rates in the context of structural breaks are Bos,

Franses and Ooms (1999, 2001), Gadea, Sabate and Serrano (2004), Franses, Hyung and Penn (2006)

and Gil-Alana (2008), and forecasting issues are examined in Franses and Ooms (1997) and Barkoulas

and Baum (2006).
3An I(0) process is defined as a covariance stationary process with spectral density function that is

positive and finite at any frequency. It thus includes the stationary ARMA models.
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seasonal autoregressive (AR) model of the form:

(4)

where s indicates the number of time periods per year, and ∈t is a white noise

process. This specification implies that the long-run dynamic behaviour of the

series is captured by the fractional differencing parameter d only, while the

seasonal structure is a purely short-run phenomenon described by the (seasonal)

AR coefficients.

A second model considered in this study is the seasonal I(ds) process described by 

(5)

where ds once more can take a fractional value. Porter-Hudak (1990) applied a

seasonally fractionally integrated model of this type to quarterly US monetary

aggregates, and concluded that a fractional ARMA model was more appropriate

than the usual ARIMA specification for these series. Other recent empirical papers

on seasonal fractional integration using a model such as (5) for macroeconomic

series are those of Gil-Alana and Robinson (2001) and Gil-Alana (2002).4 A

limitation of this approach is that it imposes the same degree of integration at the

zero and seasonal frequencies. For example, in the quarterly case, i.e., s = 4, the

polynomial (1–L4)ds can de decomposed into (1–L)ds(1+L)ds (1+L2)ds imposing the

same degree of integration ds at all frequencies: the zero, the semi-annual (π), and

the annual (π/2 and 3π/2) frequencies respectively.

The model in (5) can be generalised using multi-factor Gegenbauer processes.

Specifically, we can consider processes of the form:

(6)

where k is a finite integer indicating the maximum number of cyclical (seasonal)

structures. First we focus on the case of a single structure, i.e., k = 1,

(7)

where wr and dc are real values, and ut is I(0). For practical purposes we define wr

φ L
s( )ut εt     t 1 2 …, ,=   ,,=

1 L
S

–( )
d
s

xt ut  ,= t 1 2 …  , , ,=

1 2cosr
u( )
L L

2
+–( )

d
u

xt ut  ,=
u 1=

k

∏ t 1 2 …  , , ,=

1 2coswrL L
2

+–( )
d
c

xt ut  ,= t 1 2 …  , , ,=

4Other papers dealing with seasonal fractional integration in the context of forecasting are Ray (1993) and

Sutcliffe (1994).
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= 2πr/T, with r = T/j, and thus j will indicate the number of time periods per cycle,

while r refers to the frequency with a pole or singularity in the spectrum of xt. Note

that if r = 0 (or j = 1), the fractional polynomial in (7) becomes (1 – 2L + L2)dc = (1

– L)2dc, which is the polynomial associated to the common case of fractional

integration at the long-run or zero frequency in (2). The type of processes

described in (7) was introduced by Andel (1986) and subsequently analysed by

Gray, Zhang and Woodward (1989, 1994), Chung (1996a,b) and Dalla and Hidalgo

(2005) among others. Gray et al. (1989) showed that, defining µ = coswr, the

polynomial in (7) can be expressed for all dc≠0 as

where

and Γ(x) is the Gamma function. Alternatively, we can use the recursive formula,

C0,dc(µ) =  1, C1,dc(µ) = 2µdc, and

(see, for instance, Magnus et al., 1966, or Rainville, 1960, for further details on

Gegenbauer polynomials). These authors also showed that xt in (7) is stationary if

dc < 0.5 for  and if dc < 0.25 for .5 

If there is more than one cyclical structure, then the appropriate specification is

the multi-factor Gegenbauer process described in (6), with 

, where j(u) indicates the number of time periods per cycle

corresponding to the uth cyclical structure. Empirical studies based on multiple

cyclical structures (also named k-factor Gegenbauer processes) include Ferrara and

Guégan (2001b), Sadek and Khotanzad (2004) and Gil-Alana (2007). In the case

of quarterly time series data, we can generalise (5) by considering a model like (6)

with k = 3, and

(8)

with  or 2π (r(1) = 0, T), = π (r(2) = T/2), = π/2 (r(3) = T/4),

1 2µL L
2

+–( )
d
c

–

Cj d
c

, µ( )Lj
 ,

j 0=

∞

∑=

Cj d
c

, µ( )
1–( )k dc( )j k– 2µ( )j 2k–

k! j 2k–( )!
--------------------------------------------------       dc( )j

Γ dc j+( )
Γ dc( )

---------------------=;

k 0=

j

∑=

Cj d
c

, µ( ) 2µ
dc 1–

j
------------- 1+⎝ ⎠
⎛ ⎞Cj 1 d

c
,– µ( ) 2

dc 1–

j
------------- 1+⎝ ⎠

⎛ ⎞Cj 2 d
c

,– µ( )   j 2 3 …  , , ,=,–=

µ wrcos= 1< µ 1=

wr

u( )
2πr u( )

 ⁄=

T r
u( )

T j
u( )⁄=;

1 2 wr

1( )
L L

2
+cos–( )

d1
1 2 wr

2( )
L L

2
+cos–( )

d2
1 2 wr

3( )
L L

2
+cos–( )

d3
xt ut   ,=

wr

1( )
0= wr

2( )
wr

3( )

5Estimation methods using this approach can be found in Arteche and Robinson (2000) and Arteche

(2002).
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implying that (8) can be written as 

(9)

or, alternatively,

(10)

with , which is a seasonal (quarterly) long-

memory model with different orders of integration at each of the frequencies. Thus,

 is the order of integration related to the long-run or zero frequency;  refers to

the semi-annual frequency (π), and  is related to the annual frequency (π/2 and 3

π/2) of a 2π cycle. In some of the models, we employ the Whittle estimator in the

frequency domain. Note that the Whittle function is an approximation to the

likelihood function so the estimates should be close to the maximum likelihood

estimates. Along with this method, we also employ different versions of

Robinson’s (1994) tests. Robinson (1994) proposed a very general specification

that includes all the above models as particular cases of interest, with integer or

fractional degrees of differentiation.6 The functional form of the different versions

of the test statistics employed here are described in the Appendix.

IV. Empirical Evidence of Long Memory in European Prices

The series analysed in this section is the logarithm of quarterly CPI in Italy,

France and the UK. The sample period goes from 1957Q3 to 2007Q3 in all three

countries, and the data source is the IMF’s International Financial Statistics

published on the IMF webpage. We use quarterly data because this is the frequency

usually employed in macroeconomic studies. Moreover, the use the monthly data

would make it necessary to estimate seven different orders of integration noting that

(1-L12) can be decomposed into (1-L)(1+L)(1+L2)(1+L+L2)(1-L+L
2)(1+(3)1/2L+L2)

(1-(3)1/2L+L2).

Figure 1 displays plots of the three time series, as well as the first 50 sample

1 L–( )
2d

1

1 L+( )
2d

2

1 L
2

+( )
d
3

xt ut  ,=

1 L–( )
d
1

*

1 L+( )
d
2

*

1 L
2

+( )
d
3

*

xt ut  ,=

d1

*
2d1  d2

*
2d2 2d2 and d3

*
d3=,==;=

d1

*
d2

*

d3

*

6Another advantage of Robinson’s (1994) method is that its limit distribution is standard (normal)

independently of the inclusion or not of deterministic terms in (3) and the way of modelling the I(0)

disturbances.
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autocorrelation values, and the periodograms computed at the discrete Fourier

frequencies λj = 2πj/T, j = 1, 2, …, T/2.

The sample autocorrelation values are all significantly positive and decay very

Figure 1. Time series plots with correlograms and periodograms

The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.070
for the series used in this application. The periodograms are computed based on the discrete frequencies

λj = 2πj/T.
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slowly. Also, the periodograms exhibit the highest values at the smallest frequency.

Both features might be an indication of nonstationarity and possibly of fractional

integration behaviour. Figure 2 is similar to Figure 1 but based on the first-

differenced data, that is, the inflation rates in the three countries. The correlograms

still suggest here that the series are nonstationary, with clear seasonal patterns, and

Figure 2. First differences of the series with correlograms and periodograms

The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.070
for the series used in this application. The periodograms are computed based on the discrete frequencies

λj = 2πj/T.
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the periodograms still present a large peak at the zero frequency (as well as other

smaller peaks at the seasonal frequencies), which may suggest that the inflation

rate series are fractionally integrated with d constrained between 0 and 1. Along

this section we focus on the log-prices series rather than the inflation rates noting

that even though there is little doubts about the existence of a unit root in the log

prices, this is an assumption that should be tested, and using the fractional I(d)

framework we can test the unit root hypothesis from an alternative approach to the

standard methods based on AR models.

The first model we consider is the standard I(d) one with seasonal

autoregressions. We allow for different seasonal AR(k), (with k = 1, 2 and 3)

processes, and using the likelihood criteria (AIC and BIC) we conclude that the

AR(1) model is sufficient to describe the seasonal short-run dynamics in the three

series. In other words, we estimate the model,

(M1)

for the two cases of no regressors (i.e. µ = 0 in (M1) and with an intercept (µ

unknown in (M1).7 Here, we employ the Whittle estimator in the frequency

domain developed by Dahlhaus (1989), along with a simple version of the tests of

Robinson (1994) that is suitable for this type of model (see, e.g. Gil-Alana and

Robinson, 1997).8 The results are reported in Table 1.

It can be seen that the results vary substantially depending on the inclusion or

yt µ xt           1 L–( )dxt ut         ut ρut 4– εt           t 1 2 …   , , ,=,+=;=;+=

7We also allowed for a linear time trend in the undifferenced regression model in (M1). However, the

coefficient for the time trend was found to be statistically insignificant in all cases.
8For the estimates with the Whittle function, the method was performed on the first-differenced series

(i.e. the inflation rates), then adding one to the estimated values of d. The tests of Robinson (1994) were

performed on the original data since this method is valid for any real value of d, thus including

nonstationary hypotheses (i.e. d ≥  0.5). The results were identical in the two cases.

Table 1. Estimates of the parameters in model (M1): I(d) with seasonal AR(1)

No regressors (µ = 0) An intercept (µ unkown)

d Seas. AR D Intercept Seas. AR

FRANCE
0.966

(0.707, 1.131)
0.166

1.549

(1.438, 1.707)

2.2384

(354.58)
0.331

ITALY
0.957

(0.768, 1.100)
0.115

1.552

(1.487, 1.632)

1.5802

(224.38)
0.024

U.K.
0.968

(0.723, 1.103)
0.016

1.307

(1.225, 1.410)

1.9468

(175.72)
0.482

In bold, the significant models according to likelihood criteria. In parenthesis (in the 2nd and 4th columns)

the 95% confidence bands for the values of d. In the 5th column, they are t-values.
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not of an intercept in the model. If µ = 0, the estimated values of d are slightly

below 1 in the three cases and the unit root null hypothesis cannot be rejected in

any of the three countries. However, if an intercept is included, d is found to be

significantly above 1 in all cases, being equal to 1.549 for France, 1.552 for Italy,

and 1.307 for the UK. Moreover, the intercept is statistically significant in all three

countries, suggesting that it should be included in the model. Thus, according to

this specification, inflation may be well described in terms of a long-memory I(d)

process with d ranging between 0 and 1, and being nonstationary (d > 0.5) in the

case of France and Italy.9

In the second specification we assume that the seasonal structure can be

described in terms of a long-memory process and consider a model of the form:

(M2)

again for the two cases of no intercept (µ = 0) and an intercept, and we assume

yt µ xt       1 L
S

–( )
d
s

xt ut           ut I 0( ),≈;=;+= t 1 2 …  , , ,=

9We performed diagnostic tests on the estimated residuals (in particular, no serial correlation: Durbin,

1970; Godfrey, 1978a,b; homoscedasticity: Koenker, 1981; and functional form: Ramsey, 1989) and

could not reject the null at the 5% level in any of the three series. 

Table 2. Estimates of the parameters in model (M2): Seasonal I(ds)

i) White noise disturbances

No regressors (µ = 0) An intercept (µ unkown)

d AR coeff. d Intercept Seas. AR

FRANCE
0.914

(0.798, 1.040)
xxxxx

1.652

(1.580, 1.739)

2.28902

(214.82)
xxxxx

ITALY
0.849

(0.724, 0.992)
xxxxx

1.806

(1.737, 1.887)

1.59599

(144.22)
xxxxx

U.K.
0.852

(0.704, 0.996)
xxxxx

1.723

(1.641, 1.825)

1.95494

(162.45)
xxxxx

ii) AR(1) disturbances

No regressors (µ = 0) An intercept (µ unkown)

d AR coeff. d Intercept Seas. AR

FRANCE
0.197

(0.190, 0.206)
0.986

-0.150

(-0.388, 0.061)

3.74244

(423.98)
0.999

ITALY
0.295

(0.285, 0.308)
0.991

-0.182

(-0.367, 0.068)

3.26953

(297.55)
0.999

U.K.
0.243

(0.234, 0.255)
0.988

-0.200

(-0.358, 0.064)

3.46846

(368.19)
0.999

In bold, the significant models according to likelihood criteria. In parenthesis (in the 2nd and 4th columns)

the 95% confidence bands for the values of d. In the 5th column, they are t-values.
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now that the I(0) disturbances ut are white noise and AR(1). The results, which are

now based on another version of Robinson’s (1994) tests (see, e.g., Gil-Alana,

2002) are displayed in Table 2.

As in the previous table, the results are very sensitive to the inclusion or not of

an intercept. Specifically, in the uncorrelated case, the estimated values of d are

smaller than 1 without intercepts, while they are substantially above if an intercept

is included in the regression model. If we allow for autocorrelation in the error

term in the form of an AR(1) process, the orders of integration are much smaller

than in the uncorrelated case, being even negative if an intercept is included. These

results are highly influenced by the AR coefficient that is in the three cases very

close to 1.10 This clearly indicates that the component at the zero-frequency plays a

very important role when modelling these series. When performing Likelihood

Ratio (LR) tests to determine if there is a weak dependence (AR) structure, the

results support the white noise specification in the three countries.

Finally, we consider a 3-factor Gegenbauer process of form as in (10) for the

10Note that the polynomial (1-Ls) includes the zero-frequency since (1-Ls) can be decomposed into (1-L)

and S(L) = (1+L+…+Ls-1) implying the existence of a unit root at zero. Therefore, there might exist a

competition between the seasonal fractional differencing parameter ds and the AR coefficient in

describing nonstationarity at such a frequency.

Table 3. Estimates of the parameters in model (M3): 3-factor Gegenbauer I(d)

i) White noise disturbances

No regressors (µ = 0) An intercept (µ unkown)

d1 d2 d3 d1 d2 d3 Interc.

FRANCE
0.331

(0.291, 0.406)

0.077

(0.055, 0.108)

0.170

(0.125, 0.227)

0.314

(0.287, 0.348)

0.081

(0.058, 0.112)

0.168

(0.123, 0.226)

-.0142

(-2.402)

ITALY
0.272

(0.252, 0.296)

0.030

(0.008, 0.059)

0.000

(-.058, 0.039)

0.271

(0.253, 0.294)

0.029

(0.009, 0.054)

0.000

(-.080, 0.053)

0.0091

(1.182)

U.K.
0.179

(0.156, 0.211)

0.038

(0.012, 0.066)

0.000

(-0.89, 0.073)

0.178

(0.155, 0.191)

0.037

(0.011, 0.059)

0.000

(-0.61, 0.046)

0.0122

(2.848)

ii) AR(1) disturbances

No regressors (µ = 0) An intercept (µ unkown)

d1 d2 d3 d1 d2 d3 Interc.

FRANCE
0.135

(0.068, 0.267)

0.156

(0.104, 0.491)

0.197

(0.139, 0.283)

0.020

(-.063, 0.131)

0.305

(0.127, 0.589)

0.204

(0.135, 0.311)

0.0119

(32.501)

ITALY
0.140

(0.069, 0.255)

0.083

(0.048, 0.131)

0.000

(-.091, 0.071)

0.137

(0.068, 0.248)

0.081

(0.050, 0.129)

0.000

(-.097, 0.058)

0.0139

(6.894)

U.K.
0.054

(0.006, 0.132)

0.078

(0.055, 0.104)

0.000

(-.047, 0.037)

0.018

(-.086, 0.149)

0.030

(0.007, 0.102)

0.000

(-.049, 0.057)

0.0141

(14.720)

In bold, the significant models according to likelihood criteria.
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three inflation rate series.11 We focus on the inflation rates based on the evidence of

orders of integration around 1 or above 1 at the long run or zero frequency. In

Table 3 again we display the results for the two cases of white noise and AR(1) ut,

based on Robinson’s (1994) parametric tests. Starting with the uncorrelated case (in

Table 3(i)), it can be seen that the results are now very similar in the two cases of

µ = 0 and µ unknown. For France, the three orders of integration are about 0.32,

0.08 and 0.17 respectively for the 0, π and π/2 frequencies. In the case of Italy

these values are 0.27, 0.03 and 0, and for the UK they are about 0.18, 0.04 and 0.

In the case of AR(1) disturbances, there are some differences: the order of

integration at the zero frequency is smaller for all three series than in the previous

case of white noise ut, probably owing to the competition with the AR coefficient

in describing the nonstationarity at the zero frequency, and, in the case of France,

the orders of integration at the seasonal frequencies are now higher. For Italy and

the UK, we still find a value of 0 at the semi-annual frequency (π/2), suggesting

that there is no long-memory component at this frequency in these two countries.

Thus, in Table 4 we assume a 2-factor Gegenbauer process for these two

countries.12

Assuming that the disturbances are white noise the results are the same with or

Table 4. Estimates of the parameters in model (M3): 2-factor Gegenbauer I(d)

i) White noise disturbances

No regressors (µ = 0) An intercept (µ unkown)

d1 d2 d1 d2 Intercept

ITALY
0.275

(0.250, 0.306)

0.033

(0.006, 0.069)

0.275

(0.208, 0.307)

0.032

(0.005, 0.067)

0.00898

(1.9473)

U.K.
0.179

(0.157, 0.208)

0.030

(0.010, 0.055)

0.179

(0.156, 0.208)

0.029

(0.009, 0.054)

0.01221

(2.7631)

i) AR(1) disturbances

No regressors (µ = 0) An intercept (µ unkown)

d1 d2 d1 d2 Intercept

ITALY
-0.552

(-.703, -.441)

-0.281

(-.381, -.183)

-1.000

(-1.537, -.960)

-0.480

(-.543, -.207)

0.01683

(438.73)

U.K.
-0.663

(-.841, -.477)

-0.153

(-.317, -.031)

-0.952

(-1.217, -.883)

-0.237

(-.251, -.217)

0.01551

(253.91)

In bold, the significant models according to likelihood criteria.

11Since we are now modelling the inflation rate we take first differences of the log CPI series.
12Note that d2 (the order of integration at the semi-annual frequency), though small in magnitude, is

statistically significant in all cases.
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without intercepts. For Italy, the orders of integration are 0.275 and 0.032

respectively for the zero and the seasonal (π) frequencies, and for UK the

corresponding values are 0.179 and 0.029. In all cases, the estimates are

significantly different from zero. When imposing AR disturbances (in Table 4(ii)),

the estimates are all negative, once more probably owing to the competition with

the AR parameters in describing time dependence.13

In summary, having considered the three models described above, the preferred

specifications for each country are the following. For France:

(M1-F)

(M2-F)

and

(M3-F)

 

t-values in parenthesis and, given that , the second

equation in (M3-F) can be expressed as:

. (10)

For Italy, the models are

(M1-I)

(M2-I)

and

yt 2.2384 xt;+= 1 L–( )1.549xt ut  ;= ut 0.331ut 4– εt  ,+=

      354.58( )

yt 2.2890 xt  ;+= 1 L
4

–( )
1.652

xt εt  ,=

        214.82( )

yt yt 1– πt  ;+= πt 0.0142– xt  ,+=

                              2.402–( )

1 2 wr

1( )
L L

2
+cos–( )

0.314
1 2 wr

2( )
L L

2
+cos–( )

0.081
1 2 wr

3( )
L L

2
+cos–( )

0.168
xt εt  ,=

wr

1( )
0 wr

2( ) π wr

3( ) π 2⁄=,=,=

1 L–( )0.628 1 L+( )0.162 1 L
2

+( )
0.168

xt εt=

yt 1.5802 xt  ;+= 1 L–( )1.552xt ut  ;= ut 0.024ut 4– εt  ,+=

       224.38( )

yt 1.5960 xt  ;+= 1 L
4

–( )
1.806

xt εt  ,=

      144.22( )

13Though not reported, the AR coefficients were once more very close to 1 in all cases.
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(M3-I)

or, alternatively for the last equation in (M3-I),

(11)

and finally, for the UK,

(M1-UK)

(M2-UK)

and

(M3-UK)

or, alternatively for the last equation in (M3-UK),

. (12)

We finally performed further serial correlation tests (Box-Pierce and Ljung-Box-

Pierce) on the estimated residuals for all nine models and could not find evidence

of any extra-(weak) autocorrelation in any of the models.

V. Forecasting Comparisons

In this section, we use forecasting performance criteria to select the best

specification among the three models for each country.14 Specifically, we use the

last 20 observations for an in-sample forecasting experiment.15 Standard measures

yt yt 1– πt  ;+= πt 0.0098 xt  ,+=

                           1.947( )

1 2 w1L L
2

+cos–( )
0.275

1 2 w2L L
2

+cos–( )
0.032

xt εt  ,=

1 L–( )0.550 1 L+( )0.064xt εt  ,=

yt 1.9468 xt  ;+= 1 L–( )1.307xt ut  ;= ut 0.482ut 4– εt  ,+=

175.72( )

yt 1.9549 xt  ;+= 1 L
4

–( )
1.723

xt εt  ,=

162.45( )

yt yt 1– πt  ;+= πt 0.0122 xt  ,+=

2.763( )

1 2 w1L L
2

+cos–( )
0.179

1 2 w2L L
2

+cos–( )
0.029

xt εt  ,=

1 L–( )0.358 1 L+( )0.538xt εt=

14Note that we do not directly compare our selected models with other specifications based on AR(I)MA

or seasonal AR(I)MA models since such models are not supported by the results presented in Tables 1-4.
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of forecast accuracy are the following: Theil’s U, the mean absolute percentage

error (MAPE), the mean-squared error (MSE), the root-mean-squared error

(RMSE), the root-mean-percentage-squared error (RMPSE) and the mean absolute

deviation (MAD) (Witt and Witt, 1992). Apart from these measures there exist

several statistical tests for comparing different forecasting models. One of these

tests, widely employed in the time series literature, is the asymptotic test for a zero

expected loss differential of Diebold and Mariano (1995).16 However, Harvey,

Leybourne and Newbold (1997) note that the Diebold-Mariano test statistic could

be seriously over-sized as the prediction horizon increases, and therefore provide a

modified Diebold-Mariano test statistic given by:

where DM is the original Diebold-Mariano statistic, h is the prediction horizon and

n is the time span for the predictions. Harvey et al. (1997) and Clark and

McCracken (2001) show that this modified test statistic performs better than the

DM test statistic, and also that the power of the test is improved when p-values are

computed with a Student distribution.17

Using the M-DM test statistic (and based on the RMSEs), we further evaluate

the relative forecast performance of the different models by making pairwise

comparisons. We consider 5- and 10-period ahead forecasts on a 20-period horizon.

The results are displayed in Table 5.18

We indicate in bold in this table, for each prediction-horizon and each country,

the rejections of the null hypothesis that the forecast performance of model (Mi)

and model (Mj) is equal in favour of the one-sided alternative that model (Mi)’s

performance is superior at the 5% significance level. We note that the results are

similar for the two time horizons, though they vary across countries. In all three

countries (M2) and (M3) outperform (M1), implying that a model with a long-

memory component exclusively affecting the long-run or zero frequency is

M DM– DM
n 1 2h– h h 1–( ) n⁄++

n
---------------------------------------------------------  ,=

15Note that, although model (M3) is estimated in first differences, the forecasting results are calculated for

the log-prices series, i.e., yt.
16An alternative approach is the bootstrap-based test of Ashley (1998), though this method is

computationally more intensive.
17As argued by several authors (e.g. West, 2006) the nesting relationships among the models may further

complicate the forecasting assessments of the results.
18For the 15 (and higher period)-period forecasts there is not found superiority of one model over the

others.
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inappropriate in all cases. However, when comparing (M2) with (M3), the results

are radically different from one country to another: in the case of France (M2)

outperforms (M3); for Italy, it cannot be established whether (M2) is superior to

(M3) or vice versa, while for the UK (M3) produces significant better statistical

results than (M2).

On the basis of these results, model (M2-F) is the preferred specification for

France, implying the existence of a seasonal long-memory component, with equal

order of integration at zero and the seasonal frequencies (this order of integration

being equal to 1.652). In other words, inflation in France is a nonstationary

seasonal long-memory process, with an order of integration of about 0.652. For

Italy, models (M2-I) and (M3-I) have a comparable forecasting performance, but

given the higher flexibility allowed by (M3-I) we choose this specification for this

country. In this case, inflation is also nonstationary with a large component of long

memory at the zero frequency and a smaller one at the semi-annual frequency (see

equation (11)). Finally, for the UK, the best specification seems to be (M3-UK),

namely a two-factor Gegenbauer process, one factor corresponding to the zero

frequency (d1 = 0.358) and the other one to the semi-annual frequency (d2 = 0.058)

Table 5. M-DM statistics with h = 5 and h = 10

h = 5 h = 10

FRANCE M1-F M2-F FRANCE M1-F M2-F

M2-F
4.272

(M2-F)
XXXXX M2-F

2.892

(M2-F)
XXXXX

M3-F
4.172

(M3-F)

-7.805

(M2-F)
M3-F

2.812

(M3-F)

-5.284

(M2-F)

ITALY M1-I M2-I ITALY M1-I M2-I

M2-I
4.370

(M2-I)
XXXXX M2-I

2.958

(M2-I)
XXXXX

M3-I
4.291

(M3-I)

1.349

(----)
M3-I

2.905

(M3-I)

0.913

(----)

UK M1-UK M2-UK UK M1-UK M2-UK

M2-UK
4.117

(M2-UK)
XXXXX M2-UK

2.787

(M2-UK)
XXXXX

M3-UK
4.191

(M3-UK)

4.161

(M3-UK)
M3-UK

2.837

(M3-UK)

2.817

(M3-UK)

In bold, the cases where one of the models outperforms the other at the 5% level. The critical value at the

5% level with 19 degrees of freedom is 1.729.
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(equation (12)). According to this specification, UK inflation is a stationary long-

memory process.

VI. Conclusions

This paper has analysed the stochastic behaviour of inflation in three European

countries (France, Italy and the UK) using a general framework, namely a multi-

factor long-memory process that allows for different fractional differencing

parameters at the zero and the seasonal frequencies. The flexibility of the model,

based on Gegenbauer processes, is a very desirable feature compared with more

restrictive approaches previously used in the literature on inflation which impose

the same degree of integration at all frequencies in the spectrum. (see, e.g., Backus

and Zin, 1993, and Hassler and Wolters, 1995). Our results can be summarised as

follows. Inflation in France and Italy is nonstationary, but in the former country

this applies to both the long-run and the seasonal frequencies, whilst for the latter

the nonstationarity concerns exclusively the long-run or zero frequency, and the

contribution of the long-range dependence in the seasonal structure is relatively

small. For the UK, inflation seems to be stationary, though with a large component

of long-memory behaviour, especially at the zero frequency. 

Our results indicate that inflation is a very persistent phenomenon, at least for

the three countries examined here. The fact that the I(1) hypothesis is decisively

rejected in all three cases implies that the series are mean-reverting, with shocks

disappearing in the long run but very slowly, especially in France, and to a lesser

extent in Italy and the UK. Moreover, we have shown that seasonality matters, with

a positive though small degree of long-range dependence.

The analysis carried out in this study highlights the country-specific nature of

the processes examined. It could be extended to other countries and also taking into

account the possibility of structural breaks, stochastic volatility or non-linearities.

These are clearly important issues, whose linkages with fractional processes have

hardly been investigated until now, although they have already attracted the

attention of some researchers. Future work will focus on them.
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Appendix

Assuming that yt is described by equation (3), the regression errors, xt take the

form:

 

(A1)

where ρ is a scalar function that depends on L and the unknown parameter θ that

will take different forms as shown below, and ut is I(0). The function ρ is specified

in such a way that all its roots should be on the unit circle in the complex plane, 

 

ρ L θ;( )xt ut  ,= t 1 2 …  , , ,=
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, (A2)

for real given numbers d1, d
s, d2, … dp-1 and integer p. Note that the second

polynomial in (A2) refers to the case of seasonality (i.e. s = 4 in case of quarterly

data, and s = 12 with monthly observations). Under the null hypothesis, defined by:

Ho: θ = 0 (A3)

(A2) becomes:

. (A4)

including thus all the specifications employed in the paper.

Robinson (1994) proposed a Lagrange Multiplier (LM) test of the null

hypothesis (A3) in a model given by (3) and (A1-A2). Based on Ho, the estimated

β and residuals are:

.

The functional form of the test statistic is then given by:

where T is the sample size, and

and the sums over * in the above expressions are over λ ∈ M where M = {λ: -π <

λ < π, λ ∉ (ρl - λ1, ρl + λ1), l = 1, 2, …, s} such that ρl, l = 1, 2, …, s < ∞ are the

distinct poles of ψ(λ) on (-π, π]. Also,

ρ L θ;( ) 1 L–( )
d
1
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1

+
1 L

s
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ds θs+

1 2 wL L
2

+cos–( )
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, (A5)

and I(λj) is the periodogram of ut evaluated under the null. Thus, in model 1 (M1)

it becomes:

.

In case of model 2 (M2) it is:

,

and it is a (3x1) vector of form

,

in case of model 3.

The function g above is a known function coming from the spectral density of ut,

.

Note that these tests are purely parametric, and, therefore, they require specific

modelling assumptions about the short-memory specification of ut. Thus, if ut is a

white noise, then g ≡ 1, (and therefore ), and if it is an AR process of

the form φ(L)ut = εt, then, g = |φ(e
iλ)|-2, with σ2 = V(εt), so that the AR coefficients

are a function of τ.

Based on Ho (A3), Robinson (1994) established that, under certain regularity

conditions

,

where p is the dimension of θ. Because  involves a ratio of quadratic forms, its

exact null distribution could have been calculated under Gaussianity via Imhof’s

algorithm. However, a simple test is approximately valid under much wider

distributional assumptions: a test of (A3) will reject Ho against the alternative 

Ha: θ ≠ 0 if > , where Prob ( > ) = α.

ψ λj( ) Re
∂
∂θ
------ ρ e

iλj
θ;( )log⎝ ⎠

⎛ ⎞log θ 0==

ψ λj( ) 2
λj

2
----sinlog=

ψ λj( ) 2
λj

2
----sin 2

λj

2
----cos⎝ ⎠

⎛ ⎞ 2 λjcoslog+log+log=

ψ λj( ) 2
λj

2
----sin   2

λj

2
----cos⎝ ⎠

⎛ ⎞   2 λjcoslog,log,log⎝ ⎠
⎛ ⎞

T

=

f λ σ
2
τ;;( )

σ2

2π
------g λ τ;( )  ,= π– λ π≤<

ε̂ λj( ) 0=

R̂  d   χP

2
 ,→ as   T ∞→

R̂

R̂ χ2 α,

2 χ2 α,

2 χ2

2

 


